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Comparison of Confined, Compressible, Spatially Developing
Mixing Layers with Temporal Mixing Layers
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The spatially developing mixing layer is investigated using both linear stability theory and numerical simula-
tions. Temporal and spatial linear stability solutions are compared, and it is found that the temporal and spatial
wave numbers are equal, the temporal frequency is a function of the spatial frequency, and the temporal and
spatial growth rates have a one-to-one correspondence. Numerical simulations of the Euler equations are
performed for the spatially developing mixing layer using a linear stability forcing function. Spatially developing
simulations of the supersonic/supersonic and supersonic/subsonic acoustic instabilities and the Kelvin-
Helmholtz instability are compared to temporally developing simulations and found to be in agreement.

Nomenclature
a - speed of sound
Cph = instability phase speed
Dc = inverse Schmidt number
E = perturbation kinetic energy
L = characteristic length
M = Mach number
Mc — convective Mach number
p = pressure (p */p00al))
(S) = spatial
(T) = temporal
t = time(t*a00/L)
U = Jt-direction velocity component at the wall
u = :*:-direction velocity component (u*/a00)
v =y -direction velocity component (v */a00)
a = wave number
6 = momentum thickness
TT • = velocity, density, or pressure
p = density (P*/POO)
v? = passive scalar
co = frequency

Subscripts
i = imaginary component
r = real component
1 = high-speed stream (upper stream)
2 = low-speed stream (lower stream)
oo = freestream values
ave = average

Superscripts
= eigenfunction

' = perturbation
t = transformed
~~ =mean quantities
* = dimensioned quantities
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Introduction

H IGH Mach number shear layers play an important role
in the development of supersonic combustion ramjet

(scramjet) engines. Mixing of air and fuel in high-speed flows
is hindered by both shorter combustor residence times and by
stability of the supersonic shear layer relative to its subsonic
counterpart. The physics behind compressible mixing is still
poorly understood and requires much more experimentation.
Experimentation, in the form of direct numerical simulation,
can be costly unless one concentrates on the growth of selected
instabilities in the temporal frame of reference. The use of
temporally evolving simulations, however, is controversial
since an idealized temporal shear layer can never be obtained
in nature.

In this paper, we demonstrate that instabilities in the tempo-
rally developing mixing layer contain the same physical char-
acteristics as in the spatially evolving mixing layer. The two
models, temporal and spatial, are compared using both linear
stability theory and numerical simulations for confined shear
layers. The motivation is quite simple: temporally developing
simulations require a significantly smaller computational grid.
This enables greater structure resolution and shorter computer
run times. Also, the temporal frame of reference employs
periodic boundary conditions in the stream wise direction,
which greatly simplifies the problem.

Viewed from a temporal frame of reference, a wave system
grows in amplitude with respect to time. The temporal frame
of reference is shown in Fig. 1. Viewed from a spatial frame of
reference, a perturbation generates a train of waves that grow
spatially as they travel away from the source. The spatial
frame of reference is shown in Fig. 2. The temporal frame of
reference is usually chosen to travel at the average velocity of
the upper and lower streams of the equivalent spatial frame.

Gaster1 compared the spatial and temporal frames of refer-
ence for small growth rate solutions. He found that, for weak
amplification rates, temporally and spatially growing waves
with the same wave number have equal frequencies, and their
growth rates can be linked using the group velocity. In this
paper, the linear stability relationship between the spatial and
temporal frames of reference for all unstable solutions is
investigated. Caster's theorem coupled with a Galilean trans-
formation demonstrates a one-to-one relationship between the
temporal and spatial frames of reference. The structure of the
resulting comparison is checked with the nonlinear numerical
simulations.

The unconfined continuous flow profile has been studied
with linear stability theory by many researchers.2"8 Their re-
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Fig. 1 Temporally developing mixing layer geometry.

\
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Fig. 2 Spatially developing mixing layer geometry.

suits show that unstable modes exist at all Mach numbers and
that a decrease in mixing layer growth rate is seen with increas-
ing freestream Mach number difference. The general features
of the linear stability of supersonic mixing layers has been
delineated by Jackson and Grosh.7 They have shown that
instability modes in the supersonic mixing layer convect at a
variety of instability phase speeds, typically bounded by the
speeds of the freestream velocities.

Jackson and Grosh have shown that the type of instability
that arises in the confined, two-dimensional mixing layer is
approximately determined by the convective Mach numbers of
the high- and low-speed sides of the shear layer. The convec-
tive Mach numbers are the Mach numbers of each freestream
relative to a frame of reference traveling with the large-scale
structures. The convective Mach number of the high-speed
stream is termed Mcl, and the convective Mach number of the
low-speed stream is termed Mc2. The convective Mach num-
bers are defined as

Cph - t/2
(1)

where U\ and a\ are the freestream velocity and speed of
sound, respectively, in the high-speed stream, and U2 and a2

are similarly defined in the low-speed stream. The instability
speed or the convective velocity of the large-scale coherent
structure is Cph.

The type of instability that arises in two-dimensional mixing
layers is determined by the convective Mach numbers defined
in Eq. (1). When the convective Mach numbers Mcl and Mc2
are both less than one, then the instability is a Kelvin-
Helmholtz (subsonic) instability. When the convective Mach
number with respect to one or both of the streams is greater
than one, then the instability is an acoustic (supersonic) insta-
bility.

The acoustic instabilities are subclassified as supersonic/su-
personic (or doubly supersonic) and supersonic/subsonic. The
type of instability is again defined by the convective Mach
numbers. When the convective Mach numbers are both
greater than one, then the instability is a supersonic/super-
sonic instability. When the convective Mach number with
respect to one but not both of the freestreams is less than one,
then the instability is a supersonic/subsonic instability. Fur-
thermore, if the instability travels at a velocity closer to the
higher velocity stream, then the instability is called a fast
supersonic/subsonic mode. Conversely, if the instability trav-
els with a velocity closer to the lower velocity stream, then the
instability is called a slow supersonic/subsonic mode.

Numerical simulations have also captured the effects of
compressibility on unbounded mixing layers. A good compar-
ison between numerical simulation results and experimental
observation was achieved by Soetrisno9 and Soetrisno et al.10

for unbounded, temporal, supersonic mixing layers. The
three-dimensional, unconfined, compressible mixing layer was
investigated in the temporal frame of reference by Sandham
and Reynolds.11

More recently, linear stability analysis of the supersonic
mixing layer has included the effect of walls. Tam and Hu12

investigated the confined, spatially developing, compressible
mixing layer, and Greenough et al.13 investigated the confined,
temporally developing, compressible mixing layer. Both dem-
onstrated the existence of acoustic modes for convective Mach
numbers greater than one. The confined mixing layers were
shown to be much more unstable than the unconfined mixing
layers. The existence of acoustic modes was discovered by
Gill14 for shear layers and Mack15 for boundary layers. The
acoustic instability was shown to be the result of waves bounc-
ing between the wall and the sonic line.

Numerical simulation of the confined acoustic modes was
performed temporally by Soetrisno et al.16'17 and Soetrisno18

who investigated a variety of two- and three-dimensional non-
linear Kelvin-Helmholtz and acoustic instabilities and their
interactions within the temporal mixing layer. The work char-
acterized the large-scale coherent structure, mixing behavior,
and energetics of the different individual instability types. The
work also demonstrated that there are strong interactions
between the two- and three-dimensional instabilities.

In two dimensions, Sigalla et al.19 simulated the acoustic
instabilities in the confined, spatially developing mixing layer.
Ragab and Sheen20 and later Wu21 have also simulated individ-
ual acoustic modes in spatially developing mixing layers.
Sigalla et al.22 have demonstrated the broadbanded nature of
the acoustic instability and determined the importance of
interacting acoustic modes in understanding the supersonic
mixing layer. Huang and Riley23 have further explored the
three-dimensional temporally developing mixing layer with
broadbanded white noise forcing.

Many of these past studies have focused on understanding
how unstable modes grow in a compressible shear layer. Much
has been learned by visualizing the structure of these unstable
modes. Here, we will demonstrate that the structure of an
unstable mode in the temporal shear layer is characteristically
the same as in a spatial shear layer.

Linear Stability Comparison
Linear stability theory provides a method for predicting

which perturbations are most likely to grow in a shear layer.
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Eigenfunction solutions then determine the forcing function
necessary to excite a given instability or group of instabilities
in a numerical simulation. Linear stability theory can also be
used to help validate a numerical simulation by providing
predictions for shear layer growth rate, coherent structure
wavelength, and phase speed, against which the linear portion
of the numerical solution can be compared.

Linear Stability Methodology
The temporal linear stability analysis used here is discussed

in Greenough et al.,13 and the spatial linear stability code is
discussed in Huang and Riley.23 Briefly, the continuous profile
problem is solved for flow in a channel. The fluid is assumed
to be in viscid, nonheat conducting, and adiabatic. The uni-
form flow conditions are perturbed and substituted into the
governing equations. Linearizing these equations and assum-
ing a normal mode formulation gives a system in the form of
a nonlinear eigenvalue problem. The equations are solved
both spatially and temporally.

The normal mode formulation for the perturbation is ex-
pressed as

where TT represents either pressure, velocity, or density. The
perturbation from the mean flow is represented by TT ' , and the
complex eigenf unctions are represented by TT. In general, both
a and co are complex. However, the temporal instability grows
only in time, and thus a. is purely real. Spatially, the instability
grows only in downstream distance, and thus co is purely real.
Physically, ar represents the length of the large-scale coherent
structure and cor the frequency at which a splitter plate would
be oscillated to force that particular instability. The spatial
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Fig. 4 Temporal phase speed and growth rate, MI = 1.45,
MI= -1.45; a) Cph vs otr and b) <•>/ vs ar.

growth rate is given by - a/ and the temporal growth rate is
given by co/. The phase speed of the instability Cph is given by

C i / \ /O\ph = (&>/•/«/•) (2)

Linear Stability Results
The temporal and spatial linear stability solutions are corre-

lated with the following relations:

ar(S) = ar(T)

cor(5) = cor(7") + ar(T) X U(S)

where U(S) is the average of the spatial freestream velocities
and Ug is the group velocity given by

(4)

The spatial and temporal group velocities are approximately
equal. T denotes a temporal value, and S denotes a spatial
value. Since the spatial and temporal wave numbers are equiv-
alent, they will both be referred to as ar. Since a/ only occurs
in the spatial frame of reference and co/ only occurs in the
temporal frame of reference, their frames of reference will not
be denoted.

When the spatial and temporal frames of reference are
compared with these relationships, the two solutions fall on
top of one another. The significance of this is that, for every
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Fig. 5 Comparison of temporal and spatial phase speed and growth
rate; a) CPH vs ar and b) - «/ vs ar.

temporal wave number ar, there is an equal spatial wave
number ar and a corresponding frequency ov(S), with corre-
spondence between the temporal and spatial growth rates.

Figure 3 shows a plot of the spatial stability solutions for a
Mach number difference of AM = 2.9. The freestream Mach
numbers are MI = 4.1 and M2 = 1.2. Figure 3a is a plot of the
spatial phase speed vs wave number. Figure 3b is a plot of the
spatial growth rate vs wave number.

The corresponding plot of the temporal stability solutions
for the same Mach number difference is shown in Fig. 4. The
freestream Mach numbers are MI = 1.45 and M2= - 1.45.
Figure 4a is a plot of the temporal phase speed vs wave
number. Figure 4b is a plot of the temporal growth rate vs
wave number. The temporal stability solutions have the prop-
erty that they are either symmetric or asymmetric. The sym-
metric modes have zero phase speed, and are indicated with an
S in Fig. 4. The asymmetric modes have nonzero phase speeds
and come in pairs. Referring to Fig. 4a, each point on an
asymmetric branch has a corresponding point on an opposite
branch with an equal growth rate and an equal but opposite
phase speed. Thus, the asymmetric growth rate peaks shown
in Fig. 4b are actually two peaks, one on top of the other.

Figure 5a shows the spatial phase speed superimposed on
the predicted spatial phase speed determined from the tempo-
ral solutions and Eqs. (3). The solutions lie almost exactly one
on top of the other, demonstrating the equivalence of the wave
numbers ar and the correspondence of the phase speeds Cph. A
small discrepancy shows up at the location of the temporal
symmetric modes. This is because spatial symmetric modes are
not possible and so the frequencies are off by a few percent.

Agreement is also seen at a Mach number difference of
AM = 2.

Figure 5b is a plot of the spatial growth rate superimposed
on the predicted spatial growth rate from the temporal solu-
tions and Eqs. (3). The temporal asymmetric growth rate
peaks no longer fall one on top of the other, but again there is
a one-to-one temporal/spatial correspondence.

These figures show that, through the application of linear
stability theory, the temporal and spatial wave number, phase
speed, and growth rate are in good agreement.

Numerical Simulation Comparison
Numerical Method

The numerical simulations solve the two-dimensional, non-
steady Euler equations governing the motion of inviscid, non-
heat-conducting gases. The Euler equations are written in
conservation law form so that any shock waves and contact
surfaces are captured as part of the solution. The second-or-
der, total variation diminishing (TVD) algorithm by Yee et
al.24 is used with Runge-Kutta time advancement.

The mean flow is initialized with the dimensionless mean
flow properties p = 1 and p = 1/y, and the velocity profile is
given by

1 + U2-U;
t/i + U2

tanh ( -

with v = 0. Here U\ and U2 are the upper and lower stream
velocities at the walls. The momentum thickness is 0.05 and
the channel half width L (the characteristic length) is always 1 .
For this paper, the channel is always considered to be sym-
metric.

A periodic forcing function (obtained from linear stability
theory) given by

IT' = Trr(y) cos sin

is applied continually at the end of the splitter plate. The
perturbation is added to the basic state inflow conditions for
the upstream boundary condition. The outflow boundary con-
dition is based on the flow characteristics in the streamwise
direction. Free-slip, nonpermeable wall boundary conditions
are used in the transverse direction.

The fundamental difference between the numerical simula-
tion of the spatial and temporal shear layers lies in the applica-
tion of the boundary conditions and of the instability pertur-
bation. The temporal inflow-outflow boundary conditions are
periodic, and the temporal perturbation is added only once to
the initial condition. Note that this boundary condition im-
plies that the solution domain in the streamwise direction is
equal to the wavelength of the initial perturbation (or an exact
multiple of it). Thus, the solution domain changes for each
instability mode considered. Also, when more than one mode
is present the domain size must be an exact multiple of both
wave numbers.

The spatial computational domain is a rectangle containing
400 x 67 equally spaced grid points, corresponding to a do-
main size of dimensionless length 2 x 20. Each simulation was
allowed to flow through twice at the average velocity of the
two streams. The amplitude of the perturbation was chosen to
be 5%, with a Courant-Fredrichs-Lewy (CFL) number of 0.2
to ensure numerical stability and to resolve the time evolution.
The spatial geometry does not have to change for each insta-
bility considered as in the temporal simulations. Also, the
streamwise length does not have to be an exact multiple of
each wavelength if more than one mode is present.

To better understand the entrainment processes in the shear
layers, a passive scalar field is introduced. The passive scalar
serves to "tag" the incoming streams, so that the evolution of
each stream may be tracked separately. The evolution of this



passive scalar is governed by the time-dependent advection
equation:
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The passive scalar represents a fast, equimolecular, irre-
versible reaction. The mixing product concentration obtained
from the passive scalar gives a good indication of mixing
characteristics in the computed shear layers. Since this equa-
tion is decoupled from the fluid dynamical equations, the

Table 1 Instability modes simulated for spatial to
_____________temporal comparison

Case Mi M2 AM Instability type ar Cph(S) Cph(r) - a/ «/
1
2
3
4

4.1
6.0
3.2
3.0

1.2
3.1
1.2
1.5

3.0
3.0
2.0
1.5

Sup/sup
Sup/sup

Slow sup/sub
Kelvin-Helmholtz

2.
2.
2.
2.

,13
,13
,65
,99

2.62
4.54
2.0
2.25

0.0
0.0

-0.19
0.0

-0.
-0.
-0.
-0.

.22

.12

.17

.29

0.39
0.39
0.50
1.3
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Fig. 6 Temporal density contours for the supersonic/supersonic in-
stability; a) t = 20 and b) t = 30.
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Fig. 7 Spatial density contours for the supersonic/supersonic insta-
bility; a) Mi = 4.1 and b) A/i = 6.
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Fig. 8 Temporal density contours for the supersonic/subsonic insta-
bility; a) t = 16 and b) t = 30.

scalar field is guaranteed to be "passive," and only acts as a
fluid marker. The advection equation is solved using a Lax-
Wendroff scheme.

Details of the numerical scheme, boundary conditions, ini-
tial conditions, and passive scalar field can be found in Refs.
18 and 25.

Numerical Results
In this section, spatial simulations are compared to tempo-

ral simulations to determine the relationship between the non-
linear instability structure in the two frames of reference. The
Mach number differences simulated are the same as those
presented for the temporal simulations in Soetrisno.18 Three
Mach number differences were compared, corresponding to
each instability type: supersonic/supersonic, supersonic/sub-
sonic, and Kelvin-Helmholtz. For the supersonic/supersonic
instability comparison, two spatial simulations were run at the
same Mach number difference but with different freestream
Mach numbers. The four comparison cases are shown in Table
1. The temporal simulations are provided by Soetrisno.18

Density contours of the temporal supersonic/supersonic in-
stability (AM = 2.9) are shown in Fig. 6. This is the temporal
simulation for comparison with the spatial simulation cases 1
and 2. Figure 6a shows the temporal simulation at a time just
after saturation, and Fig. 6b shows the temporal simulation at
a time well past saturation.

Spatial simulation cases 1 and 2 (AM = 2.9) are shown in
Fig. 7. Case 1 (Fig. 7a) has freestream Mach numbers
MI = 4.1 and M2 = 1.2. Case 2 (Fig. 7b) has freestream Mach
numbers MI = 6 and M2 = 3.1. The phase speed is zero in the
temporal simulation, and the phase speeds are Cph = 2.62
(case 1) and Cph = 4.54 (case 2) for the spatial simulations.
Converting the temporal phase speed to the spatial frame of
reference shows a difference in the phase speeds of 1.1
and 0.2%.
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The spatial mixing layer in case 1 has a growth rate almost
double that of the mixing layer in case 2. Thus, case 1 (Fig. 7a)
shows earlier saturation with downstream distance and has
more quickly changing structure shapes than case 2 (Fig. 7b).

The temporal structures compare quite well with the spatial
structures. For instance, the temporal structure appearing in
Fig. 6a is comparable to the case 1 spatial structure in Fig. 7a
at about x = 7, and to the case 2 spatial structure in Fig. 7b at
about x = 10.5. The temporal structure appearing in Fig. 6b is
comparable to the case 1 spatial structure in Fig. 7a at about
x = 12, and to the case 2 spatial structure in Fig. 7b at about
x = 17.

Case 3 is a comparison of the supersonic/subsonic instabil-
ity for AM = 2. The temporal density contours are shown in
Fig. 8. Figure 8a is at a time just after saturation, whereas Fig.
8b is at a time well past saturation. The spatial comparison is
shown in Fig. 9. The freestream Mach numbers are M\ = 3.2
and M2 = 1.2. The temporal phase speed is Cph = - 0.19. The
spatial phase speed is Cph = 2. Transforming the temporal
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-1.0 10 15 20

Fig. 9 Spatial density contours for the supersonic/subsonic instabil-
ity, MI =3.2.
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Fig. 10 Temporal passive scalar contours for the Kelvin-Helmholtz
instability; a) t = 24 and b) t =30.
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Fig. 11 Spatial passive scalar contours for the Kelvin-Helmholtz
instability, Mi = 3.

phase speed to the spatial frame of reference shows a differ-
ence of 0.5%.

The temporal structures compare well to the spatial struc-
tures. For instance, the temporal structure appearing in Fig.
8a is comparable to the spatial structure in Fig. 9 at about
x = 1. The temporal structure appearing in Fig. 8b is com-
parable to the spatial structure in Fig. 9 at about x = 13.

Case 4 is a comparison of the Kelvin-Helmholtz instability
with AM= 1.5. Passive scalar contours are shown in Fig. 10.
The corresponding passive scalar contours for the spatial mix-
ing layer with freestream Mach numbers MI = 3 and M2= 1.5
are shown in Fig. 11.

Again the temporal structures compare well to the spatial
structures. For instance, the temporal structure appearing in
Fig. lOa is comparable to the spatial structure in Fig. 11 at
about x = 8. The temporal structure appearing in Fig. lOb is
comparable to the spatial structure in Fig. 11 at about x = 14.

Conclusions
The spatially developing shear layer was investigated using

both linear stability theory and numerical simulations. The
temporal and spatial linear stability solutions were compared
to each other and found to have almost exact agreement. It
was found that for every spatial wave number ar(S) there is an
equal temporal wave number ar(T) corresponding to the same
type of instability. The spatial frequency ov(S) is related to the
temporal frequency ur(T) through ar and the average of the
spatial shear layer velocities £/ave. It was also found that the
temporal growth rate o>/ is related to the spatial growth rate a/
through the temporal phase speed and (7ave.

Numerical simulations of the Euler equations were per-
formed for the spatially developing shear layer using linear
stability perturbations for the upstream boundary conditon.
Supersonic/supersonic and supersonic/subsonic acoustic in-
stabilities and Kelvin-Helmholtz instabilites were found with
the spatial simulations. These simulations were compared to
previous temporal simulations at the convective Mach num-
bers Mc = 1.45, 1.0, and 0.75. The structures of the instabili-
ties were found to be in good agreement for all cases.

The temporally developing shear layer has been demon-
strated to be a meaningful tool for studying instability growth
in the confined shear layer. Most important, however, is that
this work gives credibility to the conclusions drawn from the
numerous temporal shear layer studies discussed in the Intro-
duction. A great deal of insight at reduced computational cost
has been gained by exploiting the temporal model.

Although a good model for isolated instability growth, the
temporal geometry is not an economical model for simulating
an instability resulting from interacting unstable modes. As
mentioned previously, to satisfy the boundary conditions the
temporal domain must be large enough to contain a whole
number of both modal wavelengths. The temporal simulations
are also unable to capture the growth of nonmultiple wave-
length modes that are excited by the nonlinear interactions.
Work that stresses the nonlinear interaction of instability
modes, therefore, must employ the spatial geometry.
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